Monotone and Accretive Vector Fields on Riemannian Manifolds

نویسندگان

  • J. H. Wang
  • G. López
چکیده

The relationship between monotonicity and accretivity on Riemannian manifolds is studied in this paper and both concepts are proved to be equivalent in Hadamard manifolds. As a consequence an iterative method is obtained for approximating singularities of Lipschitz continuous, strongly monotone mappings. We also establish the equivalence between the strong convexity of convex functions and the strong monotonicity of its subdifferentials on Riemannian manifolds. These results are then applied to solve the minimization problem of convex functions on Riemannian manifolds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex- and Monotone-Transformable Mathematical Programming Problems and a Proximal-Like Point Method

The problem of finding singularities of monotone vectors fields on Hadamard manifolds will be considered and solved by extending the well-known proximal point algorithm. For monotone vector fields the algorithm will generate a well defined sequence, and for monotone vector fields with singularities it will converge to a singularity. It will be also shown how tools of convex analysis on Riemanni...

متن کامل

Concurrent vector fields on Finsler spaces

In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fields. We also prove that an L-reducible Finsler metric admitting a concurrent vector field reduces to a Landsberg metric.In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fi...

متن کامل

Existence of solutions for variational inequalities on Riemannian manifolds

We establish the existence and uniqueness results for variational inequality problems on Riemannian manifolds and solve completely the open problem proposed in [21]. Also the relationships between the constrained optimization problem and the variational inequality problems as well as the projections on Riemannian manifolds are studied. Keyword: Variational inequalities; Riemannian manifold; Mon...

متن کامل

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

Spaces of Conformal Vector Fields on Pseudo-riemannian Manifolds

We study Riemannian or pseudo-Riemannian manifolds which carry the space of closed conformal vector fields of at least 2-dimension. Subject to the condition that at each point the set of closed conformal vector fields spans a non-degenerate subspace of the tangent space at the point, we prove a global and a local classification theorems for such manifolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010